Blog Layout

The Promise of Combination Therapy

Dr. Anjaney Kothari • August 12, 2024

Given the complexity of the biological mechanisms that underlie cancer, it is prudent to identify and target more than one Achilles’ heel to attack this multifactorial disease. This can be achieved by employing combination therapy, an approach to cancer treatment that combines multiple therapeutic agents to improve patient outcomes. 


Notable Labs is at the forefront of revolutionary advancements in combination therapy, one noteworthy example being its long-standing collaboration with Syros Pharmaceuticals. For Syros, Notable developed a highly efficient predictive biological test to screen patients for the clinical trial of a combination therapy against non-acute promyelocytic leukemia (APL) acute myeloid leukemia (AML). 


Notable Labs’ innovative approach to combination therapy holds immense promise for significantly improving cancer treatment outcomes despite current limitations in commercial pursuit. This blog dives into the science behind the promise of combination therapy, how Notable is contributing toward the evolution of this technology, and why the company’s Board of Directors is excellently positioned to advance this field in the future. 


Technical Back-Up


Notable Labs' investigation into combination therapy against cancer is backed by decades of scientific research. Combination therapy holds immense promise in the fight against cancer because of its ability to additively or synergistically target two or more cancer pathways. Due to its multi-target approach, combination therapy is also an effective strategy to overcome anti-cancer drug resistance.


By collaborating with Syros in 2017, Notable Labs contributed to the phase II clinical trial of a therapy combining the drugs tamibarotene and azacitidine against non-APL AML. For this multi-arm monotherapy and combination therapy trial, Notable developed a blood-based biomarker test to help predict patient response to treatment.


Specifically, Notable was involved in conducting ex vivo experiments on peripheral blood mononuclear cells (PBMCs) isolated from the blood samples of non-APL AML patients. Harnessing the power of high-throughput flow cytometry, these experiments revealed that a 72-hour ex vivo exposure of PBMCs to tamibarotene upregulates various markers of myeloid cell differentiation, including the RARα pathway target CD38. 

Importantly, treatments that can promote myeloid cell differentiation are known to be effective against some subtypes of AML. Therefore, by testing a patient’s blood sample using Notable’s ex vivo approach, it is possible to predict whether the patient is likely to respond well to tamibarotene in monotherapy and combination therapy. Indeed, Notable’s ex vivo assay became one of the strategies Syros adopted when screening patients for enrolment in the phase II clinical trial of tamibarotene (alone as well as in combination with azacitidine).


Market Challenges


Currently, cancer treatment – and thus, the oncology market as a whole – is faced with a three-pronged challenge. There are millions of non-responders who are not benefiting from chemotherapeutic drugs, thousands of compelling drugs that need to be shelved because of perceived non-response, and hundreds of promising candidate drugs that are struggling to navigate the drug development pipeline. Notable Labs is committed to resolving these challenges through its successfully tested predictive precision medicine pipeline, a significant application of which was demonstrated during the Syros clinical trial. 


Notable Labs’ commitment is also one of the reasons why it has decided not to commercialize the combination therapy technology immediately. Notable wants to focus on refining the technology further, expanding its applications, and ensuring that it integrates seamlessly into existing healthcare systems. The company aims to develop more sophisticated prediction models and address regulatory and logistical challenges. This approach will help make Notable's technology accessible to a broader patient population, maximizing the life-saving potential of predictive diagnostics as well as combination therapy.


Broader Applications


The high-throughput nature of Notable’s ex vivo flow-cytometry-based predictive precision medicine pipeline has helped identify many powerful drug combinations to treat other cancers such as juvenile myelomonocytic leukemia. This pipeline also has great potential for identifying effective drug combinations and guiding patient enrolment in clinical trials of combination therapies for other cancers, including solid tumors. In the case of solid tumors, the Notable pipeline’s blood samples for ex vivo testing could be replaced by biopsy samples, circulating tumor cells, pleural effusion, or ascites, among other sampling options.


Founding Story


Notable’s CEO, Dr. Thomas Bock (MD, MBA), has ensured that the company is well-positioned to transform combination therapy for cancer. For decades, our CEO has worked on multiple dimensions of oncology, including precision medicine, prevention of inherited cancers, and cancer vaccines. At Notable, Dr. Bock combines his medical and business training to accomplish the company’s mission of dramatically improving patient outcomes and the success, speed, and cost of developing new medicines. 


Strength of the Board of Directors


Notable’s esteemed Board of Directors boasts of more than 150 years of combined professional experience in premier life science companies. Our board members excel in medicine (Dr. Bock), pharmacology (Mr. Tuomo Pätsi), business (Dr. Bock), finance (Mr. Michael Rice, Mr. Peter Feinberg, Mr. Thomas Graney), media communications (Ms. Michele Galen), and law (Mr. Thomas Dubin), fostering a vibrant and eclectic environment for Notable to thrive. This diverse team of bona fide giants from the pharmaceutical and biotechnology sectors is set to efficiently guide Notable Labs on its path to success in combination therapy and beyond.


Conclusion


Combination therapy for cancer, aided by predictive methods, could significantly improve patient outcomes while also broadening the population of patients who can benefit from a given drug combination. Leading the charge in this direction, Notable Labs’ predictive precision medicine pipeline boasts of massive potential to not only identify effective drug combinations for combination therapy, but also guide patient enrolment in clinical trials through predictive screening. Moving ahead, Notable’s technology is set to transform the treatment of multiple types of cancer by ensuring positive patient outcomes of personalized combination therapies in shorter times and at lower costs. 


Additional Data Points


  • AML statistics (American Cancer Society): estimated 20,800 new diagnoses and 11, 220 deaths in the US in 2024. 
  • Success stories and collaborations in the field of combination therapy: Notable’s collaboration with Syros to develop a predictive test for patient response to monotherapy and combination therapy. 
  • Potential impact on cancer treatment outcomes: Combination therapy, aided by predictive methods, has the potential to enhance patient outcome while also broadening the population of patients who can benefit from a given combination of drugs.
  • Future directions for research and development: AML treatment strategies must pivot towards personalized/precision medicine because of overwhelming heterogeneity of the disease.


References

Combination therapy in combating cancer
. (2017). Oncotarget

Notable’s collaboration with Syros. (2017). Notable Labs + Syros

Differentiation therapy for myeloid malignancies: beyond cytotoxicity. (2021). Blood Cancer Journal

New strategies to treat AML: novel insights into AML survival pathways and combination therapies. (2021). Leukemia

Precision oncology using ex vivo technology: a step towards individualised cancer care?. (2022). Expert Reviews in Molecular Medicine

Targeting RARA overexpression with tamibarotene, a potent and selective RARα agonist, is a novel approach in AML. (2023). Blood Advances

Notable Labs’ JMML data. (2023). Notable Labs 

Key statistics for acute myeloid leukemia (AML). (2024). American Cancer Society


About the Author

Dr. Anjaney Kothari is a scientific writer and researcher with a decade of experience in biomedical research. He completed his Ph.D. in Biomedical Engineering from Virginia Tech (USA) in 2019, developing and characterizing holistic in vitro and ex vivo models of hepatic and gastrointestinal toxicity. He has since been working as a freelance writer and researcher for companies operating in diverse niches, including biotechnology and biopharmaceuticals.


Disclaimer

The content of these blogs reflects the research and opinions of the individual authors and does not necessarily represent the views or positions of Notable Labs or its affiliates. The information provided is for educational and informational purposes only and should not be construed as medical, legal, or financial advice.


Notable Labs makes no representations as to the accuracy, completeness, or validity of any information in these blogs and will not be liable for any errors, omissions, or any losses, injuries, or damages arising from their use.


These blogs may reference third-party research, studies, or resources. Notable Labs does not endorse or assume responsibility for the content or practices of these third parties. Any reliance on the information provided is at the reader's own risk.


For biotechnology and pharmaceutical content, note that ongoing research and clinical trials may change the context and results discussed.


Always refer to the latest research and guidelines from reputable sources.

A collage of x-rays of a person 's bones and joints.
By Dr. Ahmed Donia August 12, 2024
Notable Labs is revolutionizing cancer treatment with its Predictive Precision Medicine Platform (PPMP), which simulates therapies and predicts patient responses with 95% accuracy. This groundbreaking technology leverages artificial intelligence and machine learning to generate extensive datasets from patient samples, enabling tailored treatments for each patient. In pediatric leukemia, precision diagnostics like next-generation sequencing enhance risk stratification, targeted therapies, and personalized treatment plans, potentially improving survival rates and quality of life. Notable's PPMP has shown success in predicting drug responses, such as achieving 100% accuracy in predicting clinical responses to venetoclax with decitabine in Acute Myeloid Leukemia. Rather than commercializing PPMP as a standalone product, Notable focuses on using its capabilities to enhance drug development, fast-track clinical trials, reduce risks, and improve patient outcomes by targeting responsive populations.
A yellow stethoscope is sitting on a white surface.
By Conor Prendergast August 12, 2024
Notable Labs is a biotech startup revolutionizing cancer treatment through its innovative Precision Predictive Medicine Platform (PMPP), leveraging data and technology to identify the most effective therapies for each patient. Founded by Matthew De Silva after his father's glioblastoma diagnosis, Notable Labs combines De Silva's finance background with the medical expertise of CEO Dr. Thomas Bock. The team includes esteemed professionals like Dr. Joseph Wagner, Dr. Glenn Michelson, and Scott McPherson, who collectively bring decades of experience in biotech, clinical trials, and financial strategy. Notable Labs partners with renowned hospitals and employs cutting-edge drug screening technology to provide personalized, data-driven treatment plans, significantly improving patient outcomes. With a dedicated and diverse team, Notable Labs stands at the forefront of precision oncology, offering hope and new possibilities for cancer patients worldwide.
A woman is holding a little girl in her arms.
By Dr. David Letsa August 12, 2024
Leukemia, a broad term for cancers of the blood cells, affects both the blood and bone marrow. It is most prevalent in adults over 55, but it is also the most common cancer in children under 15. Leukemia accounts for about 28% of all childhood cancers, with approximately 3,500 children diagnosed annually in the United States alone. This makes childhood leukemia responsible for nearly one out of every three cancer cases in children and teens. Pediatric leukemias are predominantly acute and can progress rapidly, presenting significant treatment challenges.
A woman wearing a white lab coat and earrings is standing in front of a white wall.
By Fabian Goguta August 12, 2024
Predictive precision medicine, which predicts the most effective treatment for each patient, is revolutionizing cancer care. Notable Labs leverages this approach to improve cancer treatment by identifying optimal therapies for individual patients. According to a 2020 Stanford study, Notable's Predictive Medicine Platform (PMP) accurately predicted patient response to interventions in over 85% of cases. This technology analyzes how cancer cells respond to various treatments using flow cytometry and machine learning algorithms, providing actionable insights quickly. Notable Labs' collaborations with leading institutions have demonstrated significant success in treating pediatric leukemia, particularly rare and aggressive forms like pAML and JMML. By partnering with renowned medical centers and advancing the use of predictive diagnostics, Notable Labs is at the forefront of transforming pediatric oncology and improving outcomes for young patients.
A bunch of white pills are sitting on a green surface.
July 29, 2024
Explore the burgeoning field of precision medicine, which offers personalized treatments based on genetic and lifestyle factors. This blog guides investors through developing a robust portfolio in this rapidly growing sector. It covers market potential, key investment opportunities, and strategies for managing risks. Gain insights into emerging technologies, real-world case studies, and future trends to optimize investment decisions in precision medicine.
A doctor wearing a mask and gloves is looking at an x-ray.
July 29, 2024
This blog highlights the revolutionary impact of precision medicine on treating respiratory diseases like asthma, COPD, and lung cancer. It covers how genetic profiling, biomarkers, and advanced technologies like AI and genomic sequencing are personalizing care and improving outcomes. Featuring success stories and innovations from Notable Labs, it also addresses the challenges and future potential of this approach.
medicine
July 29, 2024
The blog examines biobanks’ pivotal role in precision medicine, highlighting their impact on research, technology, and patient care. It covers breakthroughs like new genetic markers for breast cancer, explores the challenges and innovations in biobanking, and looks at future trends and investment opportunities in this essential field.
A bottle of essential oil is sitting on a wooden table.
July 29, 2024
This blog explores how precision medicine, which tailors treatments to individual genetic and lifestyle factors, intersects with evolving healthcare policies. Highlighting key regulatory frameworks and funding initiatives, it examines the impact of the 21st Century Cures Act and other policy changes. Case studies and emerging trends reveal how these policies drive innovation, improve access, and enhance patient outcomes in personalized healthcare.
A laptop computer with a lot of code on the screen.
July 29, 2024
Explore the critical issues surrounding patient data privacy in precision medicine. This blog examines recent breaches, the sensitivity of genetic and health data, and key regulations like HIPAA and GDPR. It also covers technological solutions, best practices, and future trends in data security, providing essential insights for anyone concerned with protecting patient information in the evolving landscape of personalized healthcare.
A woman with a cast on her foot is sitting in a wheelchair.
July 29, 2024
Explore how precision medicine is revolutionizing orthopedics through genetic profiling, biomarkers, and technologies like 3D printing. This blog highlights personalized treatments for conditions like osteoarthritis, leading to better outcomes and fewer side effects. Discover the latest advancements and future potential in personalized orthopedic care.
More Posts
Share by: